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Hadronic Wave Function at Low-x

Major challenge since discovery of QCD:

What is the structure of hadrons in the high-energy limit?
What are the dynamical degrees of freedom governing it?

From HERA:
e Glue dominates for x < 0.1
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CGC emerged as best candidate to
approximate QCD in saturation regime
e practical applicability

® phenomenological success



Studying Saturation

e Saturation is an inevitable consequence of QCD dynamics at
high energy
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Studying Saturation

e Saturation is an inevitable consequence of QCD dynamics at
high energy

* |t's not a needle in the haystack but should manifests itself
when studying probes that are sensitive to glue at low-x

e Required: high energy to reach saturation regime s~1/x
» ep: need energies beyond HERA



Nuclei as Amplifiers of Saturation Effects
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Nuclei as Amplifiers of Saturation Effects
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The Pre-EIC Era

103 Measurements with A = 56 (Fe):

- e eA/pADIS (E-139, E-665, EMC, NMC)

m  vA DIS (CCFR, CDHSW, CHORUS, NuTeV)
o DY (E772, E866)
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Recall:
» 54100 GeV = Vs ~ 45 GeV

» 10+100 GeV = Vs ~ 63 GeV
» 154100 GeV = Vs ~ 78 GeV
» 20+100 GeV = Vs ~ 90 GeV

Plot has more
dimensions:

e Statistics

» typically low, large
bins, no multi-
differential studies

e Breadth of
Measurements

» mostly inclusive

» often no
comprehensive set
of measurements
(incl., SIDIS, excl.,
diffractive, ...)



Pre-EIC: p+A at RHIC and LHC

y=5 4.3 2.1 0 Y543 2 1.0 1 2 3

0% RHIC 200 Gev

10

2—2 process =

Lo

Studying Saturation: RHIC: need overlap with forward physics (y~4)
LHC: low pr: overlap with central region (y~0)



Pre-EIC: p+A at RHIC and LHC

Hadron-Hadron
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® Probe has structure as
complex as the “target”

e More direct information on the
response of a nuclear medium
to gluon probe

e Soft color interactions before
the collision can alter the
nuclear wave function and
destroy universality of parton
properties (break factorization)

Electron-Hadron (DIS)

* Point-like probe

* Dominated by single photon
exchange => no direct color
interaction = preserve the
properties of partons in the
nuclear wave function

e High precision & access to
partonic kinematics

* Nuclei always “cold” nuclear
matter (CNM)




d+Au at RHIC: Forward-Forward Correlations
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d+Au at RHIC: Forward-Forward Correlations

Uncorrected Coincidence Probability (rad™")
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See also PHENIX, Phys. Rev. Lett. 107, 172301 (2011)

beam-view

e Striking broadening in
central dAu of away-
side compared to pp
and peripheral dAu

e Experimentally difficult
due to large
backgrounds

e No handle on parton
kinematics x, Q?



d+Au at RHIC: Forward-Forward Correlations
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Central dAu collisions

© STAR Preliminary CGC calculations
p; <2 GeVic<ng>=3.2 Stasto et al
Py >py > 1 GeVic <n >=3.2 —— Albacete-Marquet

—— Lappi-Méantysaari

"non-CGC" calculations
- == Kang et al

no absolute
normalization due to
exp. backgrounds

® CGC calculations complex but big improvements recently
» CGC provides good description

e Away-side peak cannot be described in leading-twist collinear
factorization framework

* Most striking evidence for saturation to-date



p+Aat LHC: Pinpointing the CGC?

e First long p+Pb run in Spring 2013

e Expectations:
» No final state effects other than usual CNM effects
» Absence of QGP “signatures”

» Saturation effects visible in bulk matter (low-x, low-pr),
pronounced and clearly at forward rapidities
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p+A at LHC: Pinpointing the CGC?

e First long p+Pb run in Spring 2013

e Expectations:
» No final state effects other than usual CNM effects
» Absence of QGP “signatures”

» Saturation effects visible in bulk matter (low-x, low-pr),
pronounced and clearly at forward rapidities

* Findings:

18l ALCE chargedparices | Classical QGP signature:
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p+A at LHC: Pinpointing the CGC?

e First long p+Pb run in Spring 2013

e Expectations:
» No final state effects other than usual CNM effects
» Absence of QGP “signatures”

» Saturation effects visible in bulk matter (low-x, low-pr),
pronounced and clearly at forward rapidities

* Findings:

Y
: —e— ALICE charged jets p-Pb 5.02 TeV

o

n_f:‘z [ anti-k jets R=0.4, |17|<0.5
Reference: Scaled pp jets 7 TeV

msmmm Systematic uncertainty

Classical QGP signature:
Jet quenching

ch. jets
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e Hadron Spectra
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p+Aat LHC: Pinpointing the CGC?

e First long p+Pb run in Spring 2013

e Expectations:

» No final state effects other than usual CNM effects
» Absence of QGP “signatures”

» Saturation effects visible in bulk matter (low-x, low-pr),
pronounced and clearly at forward rapidities

* Findings:
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high-pt observed for
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p+Aat LHC: Along Came the Ridge

e Structure observed first in heavy-ion collisions

e Two-particle correlations at small relative azimuth A¢p~0, which
extends over at least several units of relative rapidity An

¢ Particles separated by a large An are causally disconnected and
cannot be correlated, unless they produced early

CMS: Pb-Pp @ e [ra-am

PbPb \‘sNN =2.76 TeV, 0-5% ¢

3
gz:
I3

)]

k-

Explanation: Initial spatial distribution and fluctuations in hot
QCD matter. Possible explanation in “Glasma” picture. (Hydrodynamics
w/o initial spatial correlation does’t create a ridge.)

11



p+Aat LHC: Along Came the Ridge

CMS pPb \[s, = 5.02 TeV, N'}'"* = 110
1<p,<3GeVic N

1 N
Nl,_gd.-‘\n dAd
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e \Weaker ridge observed in pp in high multiplicity events
» Consistent with strong-color-field picture

» CGC explanation of ridge
@ €.g.: Dusling et al. Nucl.Phys. A836 (2010) 159-182
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p+Aat LHC: Along Came the Ridge
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e CMS & ALICE confirm substantial ridge structure in p-Pb

» Absence of final state collective flow = explained by CGC
momentum correlations same as in pp

» Presence of collective final state effects = p+A-ridge is result
from hydrodynamic evolution
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p+Aat LHC: Along Came the Flow

p-Pb

O N LI B R B BLELEL AL LELEL R B
ALICE |An| > 0.8 (Near side only)

e Collective flow (v23) observed ; ol TR Pwmsorrer L E
e Strength similar to Pb-Pb S F an an N ol :
e Suggestive of final-state E ke LN { E
collective effects o1E = _':' -
RHIC d+Au s 2+ R
» PHENIX observes flow (v2) and b
ridge. Difference to STAR R ;;ST.S(GeV/i)
needs to be resolved. o Pb-PD (5= 2.76 Tay 10-20%
» Also d+A vs. p+A % Ny
CGC 015 [=F __l-i:zﬂ*i ++ :
e |Latest calculations show that - _.;::"_:H
flow (v2,3) is produced as well o ._-'
0.05[— _':-. e
T AUEE,
T
p_ (GeV/c)
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p+Aat LHC: Along Came the Flow

p-Pb

= 0BT
e Collective flow (v23) observed 2 LE PP (o= 502 TeY An'>°'8(NeaT°"'y) E
o ol < (0-20%) - (60-100%) ]
e Strength similar to Pb-Pb S F an an N ]
e Suggestive of final-state TP ke _+__* E
collective effects orf _ﬁ:*I TR
RHIC d+Au 0.05 3:_*—.::*:++ T I -
e PHENIX observes flow (v2) and 0:""o;'f+'_;""1|5"“é“"2'5"“3'""3'5""4'1:
ridge. Difference to STAR | | | . (GeV/c)
needs to be resolved. Q Pb-PD (5= 2.76 Tay 10-20%
b Also d+A vs. p+A T iy
CGC 015/ =P ._.-H:H:*I ++ :
e Latest calculations show that * _.;::':_:H
flow (v2,3) is produced as well .
005 T e
Still too soon to make definitive : *_
statement regarding CGC vs o35
final-state collectivity pr (GeVIE)
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Implications from p+A

e At RHIC and especially the LHC, the nucleus seems to be
not as “cold” as expected

» at minimum: contribution from locally “excited” matter
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Implications from p+A

e At RHIC and especially the LHC, the nucleus seems to be
not as “cold” as expected
» at minimum: contribution from locally “excited” matter
e Separation of initial and final state needed as is the case for
A+A -
» final state not well understood
e Dilemma
» Final state effects largest at small b
» ... but so are saturation effects

Despite LHC's high energy and low-x reach, the EIC is not
only relevant but absolutely essential to understanding QCD in
the saturation regime. In fact the understanding of p+A and

A+A results at LHC might depend on it.
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eA at EIC: Unique Key Measurements (I)

Measurement of structure function F2, F. and their characteristic
A dependence at down to x ~ 3x10

EIC WP:

Saturation _
predicts B
characteristic i e
A dependence. o o4

Systematic

error dominates ol

New simulation:
Kinematic reach
and sys+stat errors
for eRHIC
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eA at EIC: Unique Key Measurements (ll)

Clear saturation/CGC signatures such as di-hadron correlations

C(Ag)

iIn @ background free environment with access to the relevant
Kinematic variables

I~ tri 7]
0.4 p>2Geve 15 GeV'x 100 GeV ] 1 N ] =
- 1GeVic<p2™*°<pl® N [ L
[ 0.2<2®, 250 <0.4 4 4 evhu-nossa B e+Au - nosat
L 1<Q%<2 GeV?/c* BN =

0.3

0.6<y<0.8
[Ldt=1 fo-/A

-4 eAu-sat

JeAu

0.2 1<Q2<2GeV? |

0.6<y<0.8

0.1 eRHIC 15 GeV x 100 GeV

1o L SLdt=10fb1/A —

2 25 3 3.5 4 4.5 ' - '10-2
A¢ (rad) Xgag

New simulation:

Now include Sudakov form factor to account for generated radiation
through parton showers. Difference between sat and no-sat gets smaller
but still significant. Include Kinematics and sys+stat errors for eRHIC.
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eA at EIC: Unique Key Measurements (lll)

Day-1 measurements that will give clear evidence for saturation
such as differential Ogiffractive/ Odiffractive ratio

B B
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01 g T T T T T 1 T 0.02 \ | B I
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E 006 fLdt=1fo"1/A = oo012f 5 s JLdt =1 fo /A
E 005 F
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8 004t E
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§ 0.03 E i
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iy E saturation model F X
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0.6 . 2 o08fF
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M2 (GeV2) = L e ]
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New simulation: w2 (Gov?
Saturation model calculations (Sartre event generator & analytic) now
include qqg that affect the ratio at low . Now confirm observation in arXiv:
0805.4809 of enhancement of double-ratio at large f§ and suppression at

low . Sat-simulations describe HERA results in ep. -



eA at EIC: Unique Key Measurements (V)

Measurement of diffractive vector meson production that allows
to study the spatial gluon distribution in nuclei

C = L
4 | JLdt = 10 fb"'/A o coherent - no saturation 5 F JLdt=10fb1/A o coherent - no saturation N [ ]
107 g 1<Q2<10 GeV2 o incoherent - no saturation 10° &2 1<Q2<10 GeV2 o incoherent - no saturation ew s u I e s .

x <0.01 = coherent - saturation (bSat) O x<0.01 = coherent - saturation (bSat)

s In(edecay; <4 * incoherent - saturation (bSat) [=0o IN(Kdecay)! <4 e incoherent - saturation (bSat) . L] u
IR 0t el Tooue Proof that source distribution
o = o E
. Fag

St/ =5%

F(bT) can be obtained by
e Fourier transformation of
AN doy/dt.
‘ P ™. Encouraging results: Already
W Y el “  for [t| < 0.1 GeV?
O b e e o o e o o asan sesan or e i oo INPUL distribution can be
e 10 extracted with surprising

+Au= e+ AL+ I Gt (nb/GeV?)

do® AU e+ AL DGt (nb/GeV?)

dot®
3

F(b)/[F(b) db

/[F(b) db

F(

ol i P Sl precision (PRC C87, 024913)
i 2 ol Critical: Separation of
T bt~/ coherent and incoherent part
o " through detection of breakup n
| o of (ZDC) and optionally charged
g oot fragments in forward detectors
2 (Roman Pots). Simulations
ot show it works!
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Take Away Message

e The e+A program at an EIC is unprecedented, allowing the
study of matter in a new regime where physics is not
described by “ordinary” QCD

» non-linear QCD/saturation/higher twist effects,
» properties of glue (momentum & space-time)

19



Take Away Message

e The e+A program at an EIC is unprecedented, allowing the
study of matter in a new regime where physics is not
described by “ordinary” QCD

» non-linear QCD/saturation/higher twist effects,
» properties of glue (momentum & space-time)

e Exciting results at LHC and RHIC in p+A but also new
complications in p+A studies at RHIC and LHC

» collective effects indicate contribution from final state

» key measurement of saturation not as clean-cut as
anticipated

» e+A at EIC might at the end be necesary to understand
not only A+A but also p+A
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Take Away Message

e The e+A program at an EIC is unprecedented, allowing the
study of matter in a new regime where physics is not
described by “ordinary” QCD

» non-linear QCD/saturation/higher twist effects,
» properties of glue (momentum & space-time)

e Exciting results at LHC and RHIC in p+A but also new
complications in p+A studies at RHIC and LHC

» collective effects indicate contribution from final state

» key measurement of saturation not as clean-cut as
anticipated

» e+A at EIC might at the end be necesary to understand
not only A+A but also p+A

e Steady progress in studies of key measurements in e+A
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